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ABSTRACT 

Magnetic flux leakage (MFL) methods are used widely in the nondestructive 

evaluation (NDE) of natural gas transmission pipelines. In this technique, the pipe wall is 

magnetized in the axial direction and a circumferential array of Hall sensors is used to detect 

any leakage flux caused by the presence of defects in the pipe wall. In general, this tool 

generates an axially oriented magnetic field, which is sensitive to the presence of 

circumferential cracks. However, these inspection tools are insensitive to stress corrosion 

cracking (SCC) which are oriented largely in the axial direction. 

A possible solution to this problem is to utilize the fields associated with the 

circumferential cmrents generated in the pipe-wall by the movement of the magnetizer 

relative to the pipe-wall. Since the motion of the tool inside the pipe is along the pipe axis, 

the motional emf due to the vxB term is negligible between the poles of the magnet. 

However, at the poles, the radially oriented magnetic fields generate a significant amount of 

circumferentially directed currents. The intersection of these motion-induced currents with 

the axial SCC results in a perturbation of the current distribution. The fields associated with 

the perturbation currents carry information relating to the presence of axial SCC. 

The finite element nndeling of the interaction between axial stress corrosion cracks 

and circumferential currents is a significant challenge in terms of both the computation time 

and memory requirements. The challenges arise due to the nonlineanty of material 

properties, the size of tight cracks relative to that of the magnetizer, and the time stepping 

involved in modeling velocity effects. An approach is presented to avoid these problems by 
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decomposing the overall task into four simpler subtasks that can be performed sequentially. 

The simulation results demonstrate the feasibility of detection of both single and symnunetric 

see and SCC colonies of arbitrary orientation. 



www.manaraa.com

1 

CHAPTER I. INTRODUCTION 

Natural gas is transported to custonier locations through a vast network of pipelines 

totaLng over a million miles [1]. The development of NDE technology to ensure pipeline 

integrity is necessary for the safe and reliable operation of the pipelines [2]. Several causes of 

pipeline failures are shown in figure 1.1. The most recent concern in gas pipeline inspection 

is the detection and characterization of stress corrosion cracking (SCC). The first recognized 

case of pipeline stress corrosion cracking was recorded in 1965. Since then, much has been 

learned about the nature of SCC [3]. 

• General Corrosion (9%) 

4 9 • PittiongCorrosion (13.3%) 

7.5 

8 

• Material Defea (12J%) 

• Stress Corrosion Cracking 
(1.5%) 

• Mechanical Dmage Caused by 
Equipment (44%) 

• Eanh Movement. Washout, etc, 
(8%) 

B Construction Up^ad (7.S%) 

44 
• Chemical. Bacteriai. Sour Gas 

(4%) 

Figure 1.1. Incidents related to natural gas pipeline 
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1.1. Stress Corrosion Cracking 

Stress corrosion cracking is a complex phenomenon that has caused several service 

and hydrostatic retest failures in gas and liquid pipelines [4]. SCC occurs at isolated locations 

and when a limited set of conditions is met. The exact mechanisms that lead to SCC and 

operating conditions that affect cracking are the subject of ongoing research. SCC results 

from the combined action of stress, a cracking environment, and temperature that causes 

cracks to initiate and grow in pipe steel. Individual cracks are generally oriented 

perpendicular to the maximum stress and parallel to the pipe axis. Groups of cracks usually 

occur in what is known as a "colony"'. In extreme cases, these colonies may be several feet 

long and extend nearly around the circumference. An SCC colony is considered sparse if the 

cracks are far apart in the circumferential direction and dense if the cracks are 

circumferentially close together as shown in figure 1.2. Individual cracks can range in depth 

from "shallow" to "deep". Many of the cracks in the middle of dense colonies have a depth 

less than ten percent of the wall thickness. In sparse colonies and in some dense colonies, the 

cracks can grow in a stable manner until they reach a depth that is nearly through the wall. 

The detection of these deeper cracks is of primary concern in inspections for evaluating 

pipeline integrity. 

1.2. Magnetic Flux Leakage (MFL) method 

MFL methods are used widely in the nondestructive evaluation (NDE) of nattiral gas 

transmission pipeline. When a ferromagnetic material is magnetized using a permanent 

magnet or current the presence of a defect in the magnetized ferromagnetk material results in 



www.manaraa.com

3 

(b) 

Figure 1.2. Example of stress couosion crack colony, (a) sparse (b) dense [4] 
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a redistribution of the flux line in the vicinity, causing some of the flux lines to leak out into 

the surrounding medium [5] [6]. The magnetic flux leakage NDE method is based on the 

detection of the leakage flux around the defect. The flux leakage phenomena can be 

explained by the change of permeability ^, and magnetic flux density B in the presence of a 

defect. Consider a steel billet bar with a surface defect as shown in figure 1.3. Let the cross 

sectional area of the billet be A and the cross sectional area of the defect be 'a' so that the 

cross-sectional area of the billet with defect is A'=A-a. Suppose the billet is placed in a 

magnetizing field H, and Bi is the induced flux density in the bar at X shown in figure 1.3. 

The corresponding operating points are represented by Pi and Qi respectively on the 

permeability and normal induction curve shown in 1.4. The total flux passing through the bar 

is given by BiA. If a defect is now introduced in the cross-sectional area, the induced flux 

density at X is B2=Bi (A/A') which is greater than the B]. Correspondingly the operating 

point Qi moves to Q2 on the normal induction curve and PI moves to P2 on the permeability 

curve. This results in conflicting demands in the vicinity of the defect. The increase of 

induced flux in the vicinity of the defect drives the permeability in the vicinity of the defect 

to a value less than that in the defect free area. Since flux lines follow the path of least 

reluctance, some of the flux leaks into the surrounding medium. 

One of the first theoretical studies for calculation of the magnetic flux leakage fields 

was presented by Zatsepin and Schcherbinin [8] [9]. They modeled the defect surface by a 

distribution of magnetic dipoles and calculated the dipole magnetic field. The rectangular slot 

is modeled by the following assumptions. First, they assimK that magnetic charges are 

uniformly distributed over the sides of the slots and the charge on the base of the slot does 
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Figure 1.3. Steel billet bar with defect [7] 

B , n  

Magnetization Field H 

Figure 1.4. Magnetic characteristic of billet bar [7] 
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affect the leakage field. Using the above assunq)tion, expressions were obtained for the 

normal and tangential con:q)onents of the magnetic leakage fields due to an artificial 

rectangular slot as shown in figure 1.5. 

H , = 2 o ,  arctg 
h(x + b) 

-arctg-
h(x-b) 

Hy =o,ln 

(x+b)^+y(y + h) *'(x-b)-+y(y+ h) 

(x + b)-+(y + h)-][(x-b)--t-yv 

ix + b)- + y'J[(x-b)-+(y + h)-

where is the linear density of magnetic charge. Subsequent papers [10] [11] based on the 

dipole method present the in^rovements in the model in terms of reducing the edge effect. In 

this model, they consider the charges are distributed not only on the edges of the flaw but 

also at the surface of component adjacent to the flaw. Although this approach approximates 

the leakage fields fairly well, it is limited to very simple and restricted geometries. 

Figure 1.5. D^le model 
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Significant progress in the calculation of leakage field was made by Hwang and Lord [12] 

using numerical methods based on finite element analysis showing the feasibility of the finite 

element method for defect detection and characterization. The application of the work is 

extended in [13][i4], where the finite element method is applied to a variety of con^)licated 

defect shapes. Currently finite element methods are the most widely used numerical 

technique for solving many engineering problems including NDE. 

1.3. Problem Statement 

A schematic of the MFL inspection tool for the pipeline inspection, referred to as the 

pig, is shown in figure 1.6. The pig consists of three major parts, namely the magnetic circuit, 

the ball sensor array and data acquisition system [IS]. The magnetic circuit consists of 

magnet assembly, backing iron and brushes. The permanent magnet magnetizes the pipewall 

between the brushes in the axial direction. In the presence of an outside diameter (OD) 

defect, the magnetic fields near the defect are redistributed and some magnetic fields leak out 

as shown in figure 1.6. The circumferential array of hall sensors is used to detect the flux 

leakage caused by the presence of the defect. 

In general, the conventional MFL tool generates an axially oriented magnetic field, 

which is sensitive to the presence of circumferential cracks. However, these inspection tools 

are insensitive to stress corrosion cracks which are oriented largely in the axial direction. The 

detection of SCC in this incipient stage, therefore remams a major challenge to pipeline 

inspection con^anies. 
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^ Defect  

D r ive  
Sect ion Acquis i t ion  

ensoiv  

Leakage FInx 

Figure 1.6. Schematic of pig and flux distribution in the pipe wall 

A simple solution for addressing this problem is to rotate the magnet as shown in 

figure 1.7. In this case, the magnet generates a circumferentially oriented flux that will be 

sensitive to axially oriented SCC. However, with a single magnet, defects positioned at the 

points A or B camiot be detected. 

One of the possible solutions to this problem is to generate a rotating magnetic field. 

The application of rotating noagnetic field for detection of the axially oriented SCC in the 

pipe-wall is shown in [16]. The rotor placed in the pipe is excited to generate 

circumferentially oriented rotating magnetic fields in the pipe-wall. The interaction of 

rotatmg oriented defect restilts in perturbation of the magnetic field. Experimental and 

numerical results presented in [16][17] show the feasibility of the method. 
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>tfN 

Figure 1.7. Magnetic flux due to rotated single magnet 

The rotor is excited by a three phase power supply at frequency 40 Hz. The sensor coil with 

10,000 turn with a dimension of 2x1x0.5 cm was used for measuring the magnetic flux 

density. However, this method needs a new tool design. 

An alternate solution to the problem is to augment the existing procedure by 

examining alternate information sources available in the pig. For instance, the motion of 

permanent magnets relative to the pipewall generates an emf in the pipewall given in 

magnitude and direction by vxB, where v is the velocity of motion and B is flux density 

[18] [19]. This motional emf generates large anx)unt of currents in the pipewall. Since the 

motion of the tool inside the pipe is along the pipe axis, the motional emf due to the vxB 

term is negligible between the poles of the magnet. However, at the poles, the radially 

oriented magnetic fields generate a significant amount of circumferentiaUy currents that 

decay away firom the poles. The interaction of these motion-induced currents with axial SCC 
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see Colony Motion 
Generated 
Currents 

Brushes 

Figure 1.8. Motion-induced cmrent 

colonies results in a perturbation of the current distribution as shown schematically in figure 

1.8. The fields associated with the perturbation currents carry information relating to the 

presence of axial SCC. 

This dissertation investigates the feasibility of this idea by developing a FE model to 

simulate this phenomenon. To model a realistic SCC and simulate the motion-generated 

current in the pipewall and the current perturbation fields by the SCC, a full 3D numerical 

modeling is needed. The 3D modeling, however, is a significant challenge due to nonlinearly 

of material properties, the size of tight cracks relative to that of a magnetizer, and also the 

time stepping involved in modeling velocity effects. Due to these problems, the development 

of a M 3D model is very dif&ult even with the current state-of-art con^uter hardware and 

software. 
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Atherton and Mergelas [20] present an approach for studying the interaction between 

defects and eddy currents in which the defect is modeled by a combination of surface 

solenoidal currents and cunent loops at the edges on the surface. Chen and Miya [21] 

proposed the ring current model for describing eddy current perturbation due to a crack. The 

crack opening is represented by two sets of ring currents. Huang, et al [22] have used the 

dipole current model to solve forward and inverse problems in eddy current NDT. 

The method proposed in this thesis presents a quantitative description of a tight crack 

in terms of perturbation currents derived from the velocity induced circumferential currents 

obtained in a defect free pipe. The approach used decomposes the overall task into four 

simpler subtasks that can be performed sequentiaUy. In this procedure, we assume that the 

perturbation effect due to a defect is limited to a small region around the defect. This helps 

reduce the region of interest that needs to be modeled. Second, the region of interest is 

assumed to be in remote area from exciter and hence we can assume linearity. This also 

allows use of the superposition principle, where we can divide the total current into (i) 

background current (Jo) which is the circumferential current due to the vxB effect in the 

absence of defect and (ii) perturbation cunent (Jp) due to the introduction of an SCC. 

The underlying concepts of the four-step procedure can be summarized as follows; 

Step 1: The velocity induced currents Jq in a defect-free pipe wall due to axial motion of the 

magnetizer relative to the pipe are calculated. 

Step 2: Assuming that the defect is nonconducting, the tight crack is modeled by applying a 

current - J,, at the nodes i definmg the SCC. The total perturbation current Jp is then 

computed. 
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Step 3: The results obtained in step 2 are used to solve for the perturbation fields 

Step 4; Measure the perturbation fields using a single induction coil 

1.4 Scope of the Dissertation 

Chapter II presents the geometry and governing equation for the axisymmetric 

formulation of an MFL non-destructive evaluation method for the gas pipeline inspection. 

Velocity effect analysis and nonlinerity of the material property are discussed in chapter m. 

In chapter VI, the procedure for the numerical modeling of interaction between the axial 

oriented SCC and the motion-generated circumferential currents is presented. For modeling 

of the SCC colonies, a simple superposition method and double layer source model are 

descnbed. Substructure method is utilized for reducing the computational complexity. 

Chapter V shows the numerical results due to a single SCC and SCC coloines. Parametric 

studies are conducted for the different defect parameters (length and depth) and different 

sensor positions (axial and circumferential). Chapter VI presents conclusions and direction of 

future works. 
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CHAPTER II. 2D AXISYMMETRIC MODEL 

2.1. Geometry 

Conventional MFL technique for gas pipeline inspection uses the inspection tool 

called "pig". The pig consists of three nnajor parts, namely a magnetic circuit, a hall sensor 

array and a data acquisition system. The magnetic circuit consists of magnet assembly, 

backing iron and brushes. The cross section of a pig is shown in figure 2.1. Detailed 

descriptions of the pig are given in [15]. 

Pipe wall 

brush brush 

pole piece pole piece 

magnet magnet 

steel 

Figure 2.1. Cross section of typical MFL inspection tool 

2.2 Governing Equation 

The governing equations describing the MFL phenomena begin with the differential 

equation of Ampere's law 

VxH = J (2.1) 
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where. His magnetic field intensity and lis source current density. The vector magnetic 

potential A is defined by 

VxA = B (2.2) 

where, B is magnetic flux density. For a homogeneous and isotropic ferromagnetic material, 

the magnetic flux density B is related to magnetic field intensity by 

B = nH (2.3) 

where |i is the permeability of the material. Substituting equations (2.2) and (2.3) into (2.1) 

gives the governing partial differential equation. 

Vx—VxA = J (2.4) 

This, however, does not determine A umquely, because if A is a solution to equation (2.4), 

any function that can be written as A' = A + V/ is also a solution regardless of the form of /. 

Hence, to determine A uniquely, a gauge condition equation (2.5) should be imposed on its 

divergence. In this thesis, the Coulombs gauge is used and defined as 

V-A = 0 (2.5) 

By using the vector identity 

V x V X A  =  V ( V - A ) - V ^ A  ( 2 . 6 )  

and assuming ^ to be constant, equations (2.4), (2.5) and (2.6) yields the vector Poisson 

equation. 

V^A = -mJ (2.7) 
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In the case of axisymmetric geometry, the cylindrical coordinate system (r,<l),z) is used 

where r is radial direction, <{> is circumferential direction and z is axial direction and equation 

(2.7) reduces to 

d [ 1 9 , ^ 0  a r d A ^  = -J. (2.8) 

The magnetic vector potential A and source current Js in axisymmetric case has only 

circumferential component (|> and hence are treated as scalars. 

2.3 Finite Element Fonnulation 

Applying the weak formulation to equation (2.8) we can write 

' a, 

jidrl^rdr 

^ I a ri d ^ 

^ dz r dz 
+J dV = 0 (2.9) 

Integrating (2.9) by parts and invoking the identities 

1 SrA 

dr 
5A 

r dr 

1 9rA 36A -. 3 1 9rA 

r dr 
(2.10) 

3 f 5A drA) 

dzl r 3z 

3A 36 A ^ 3 1 3r A 

3z 3z dz r 3z 
(2.11) 

then we obtain 

dV 

-J 1 1 3 . . .  3 5  A  1  3  A  3 6  A  - . .  
—3:(rA)—+-3-^ 6AJ 
(i r dr or p. dz dz 

dV = 0 

(2.12) 
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In order to apply the Green's theorem, we manipulate the equation (2.12) to get 

(n drv rdr ;  r^ rdr "^az 
5Ai|-(rA) 

r dz 
dV 

-! 
l i d ,  ̂ , d 6 A  1  
—3-(rA)—+-
H r dr dr r 

1 d 
5A-|-(rA) 

r dr 

y I ue. y 

^ 18A85A 
+ —r r 5AJ 

(2.13) 

dV = 0 
/ ^ dz dz 

By applying Green's theorem, the first term becomes a surface integral and can be written in 

form 

l-5Af-|-(rA)n, +^n3ldS = |-6A^dS 
J ^ V r d r  d z ;  d n  

(2.14) 

If the Dirichlet boundary condition is used, the value at the boundary is known, hence the 

variation 5Ais zero at the boundary nodes. If the Neumaim boundary condition is known, 

dA 
— is zero. Using this result in equation (2.13) the integral equation reduces to 
dn 

J l i d ,  , , d 5 A  K  

H r dr or r 
5A--|;(rA) 

r dr ^ dz dz 
dV=0 (2.15) 

If we arrange it as the elemental matrix form 

•/dA A^l JdA)  
a — + -

dr T J V dz 

dA A 

IT "^7 
dA 

dz 

dV-j5AJdV = 0 (2.16) 
V. 

Using the nodal element approximation 

N. 
A.=£A^N^ (2.17) 

k=l 

where Ne is the node in each element, Nk is the shape function corresponding node k. Using 

the following notation 
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VA,= 

f d A  A )  ____ L fd 0 ^ 
dr r _ V dr r ~Z-

Ic 
V 3z J i dz J 

N.Afc =(VN)A 

Substituting back in equation (2,16), we get 

J5A/ -[VNfiVNjA, -j[Nf dV = 0 

We can write elemental matrix equation as follow 

[sL(a1.=[qL 

where 

[S], = f-[VN]^[VN]dV 

[Q]e = |j[N]^dV 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

2.4. Numerical Results 

Axisymmetric formulation (2.19) is used to simulate the MFL technique to detect the 

defect. The cylindrical coordinate system (r - radial direction, 0 - circumferential direction, 

and z - axial direction) with symmetry along 0 is used. The detailed pig geometry is shown 

in figure 2.2. The pipe length is 2.S15 m with thickness is 0.009 m. The reluctivity of the 

pipe is 15915 (m/H) and the conductivity is 6x10^ (mho/m). In order to apply the finite 

element method, we first discretize the solution region into rectangular elements as shown in 

figure 2.2. The number of node is 77 xl81 (r: 77, z; 181). 
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^ 0.0414 

f 0.0190 

t 0.044 

The length of the element size in the z-direction is 0.0191 m and various in the r-direction. 

Figure 2.3 shows the mesh discretization corresponding to the geometry in figure 2.2. The 

defect is 8 cm in length and has a depth equal to 80% of the pipewall. Figure 2.4 shows the 

contour plot of the flux lines. We can clearly see from this figure that the flux line produced 

by magnetizer distort and leak out around the defect. Figure 2.5 shows the corresponding flux 

density plot (a) Br - radial con^nent (b) Bz - axial component, as a function of axial 

distance of the pig. 

In the MFL inspection technique, the magnetizer moves at a high speed in the gas 

pipeline. At this high speed, the MFL signal distorted significantly. In the following chapter, 

the effect due to velocity of the pig is discussed. 

pipewall (0.009 m) 

brush 
pole piece 

magnet 

brush 
pole piece 

magnet 

steel 0.125 

0.711 m 

Figure 2.2. Detailed pig geometry 
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£ 0.24 

S 0.22 

-0.1 0 0.1 
Axial Direction (nn) 

Figure 2.3. Mesh discretization around the pig 
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/ 

/ 
/ 

•1.5 -t -0.5 0 0.5 1 1.5 
Sensor position (m) 

(a) 

0.03 

0.025 

0.02 

® 0.015 

0.01 

0.005 
0.5 1.5 •1.5 •0.5 0 1 

Sfnsor position (m) 

(b) 

Hgure 2.5. Flux density plot of 8 cm long and 80% depth defect (a) Radial con^nent 

(Br) (b) Axial con^nent (6z) 
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CHAPTER III. VELOCITY EFFECT AND MATERIAL 
NONLINEARTY 

In a practical pipeline inspection, the MFL inspection tool moves in the pipe with 

velocities up to 25 m/s. At this high velocity, the leakage signal is significantly distorted due 

to motion-generated emf. The magnetizer velocity, v, is along the pipe axis, the motional 

emf due to the vxB term is negligible between the poles of the magnet. However, at the 

poles, the radially oriented magnetic fields generate a significant amount of circumferentially 

directed currents. Figure 3.1. shows the schematic of the current induction process. 

Understanding the effects of velocity on the leakage field is very important in improving the 

accuracy and reliability of MFL inspections. A detailed mathematical formulation of this 

procedure is presented next. 

Induced current 

Out In Pipe wall 

m m m m  ® ® Q Q 

Flux, B Flux, B 

Magnetizer 

Magnetizer velocity, v 

Figure 3.L Current induction process due to interaction of magnetizer and velocity 
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3.1. Velocity Effect Analysis 

The motion of magnetizer in the pipeline can be analyzed using a moving coordinate 

system [23] or a fixed coordinate system [24] [25] [26]. In the moving coordinate system, 

the observer is positioned on the moving object. In this case, there is no motion seen by the 

observer and the vxBterm responsible for motion induced current does not appear in the 

governing equation. However, this method is laborious since the movement is taken into 

account by a moving mesh, involving extensive work in mesh regeneration. In the fixed 

coordinate system, the observer has fixed geometrical relation with the field source. The 

motion related term vxBis shown in the governing equation. The motion related term 

vxB results in spurious oscillations in the solution if the standard FEM methods, such as the 

Galerkin method, are used. However, there are several method [27] [28] [29] to overcome the 

spurious oscillations. 

3.1.1. Fields Transfoimation 

If we use prime variables for the moving coordinate system with a constant velocity, the 

differential equations in quasi-static magnetic field systems can be written as 

(3.1) 

V'B'=0 (3.2) 

(3.3) 

V'D'=0 (no fi«e charge) (3.4) 
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B'=n'H' (3.5) 

where V and—denote the space and time derivations, B' and E' are the magnetic and 
9t' 

electric fields observed at the moving coordinate systenL The equations (3.1) to (3.5) can be 

transformed to the equation using fixed coordinate system, that is, the coordinate system 

which is fixed on the field source. Before the transformation are derived, we need to derive 

the relationship between the two differential operators, Vand V'. Consider two inertial 

coordinate systems r and ? which are moving with a constant relative velocity v . The time t 

and t' measured by observers in the two coordinate system are assumed same 

t = t' (3.6) 

If the origin of the two coordinate systems are selected to coincide at t=K). 

r = r-vt (3.7) 

For each coordinate system 

x'=x-v^t, y'=y-Vyt, z'=z-v^t (3.8) 

Consider a scalar function f (x,y,z,t) which can be written as f (x',y',z',t') by substituting 

equation (3.6) and (3.7). The gradient of the primed coordinate system 

"•l-.-l-.-S-. 
by the chain rule 

9f ^ 3f ax' ^ 9f ay ^ 3f az' ^ 9f 3t' 

ax dx' ax ay' ax az' ax at' ax 
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y 

z 

Figure 3.2. Two inertial coordinate system in relative motion 

From equation (3.6) and (3.8) 

9x ' dx dx dx 

^ = 1; ^ = ̂  = (3.II) 
3y 3y 9y 9y 

^-1- _ 9y' _ 3t'  _Q 
dz ' dz dz dz 

Using equations (3.10) and (3.11) with (3.9) 

Vf=Vf (3.12) 

Similarly for vector functions B', we have the relation 

V.B'=V-B' (3.13) 
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V'xB'=VxB' (3.14) 

However, in the case of time derivative 

9t 3t' 3t dx' dt dy dt dz' dt 

From equation (3.6) and (3.8) 

^ - 1  ^  
at ' at 

Substituting equation (3.16) into (3.15) 

dy' dz' 

r a 

at "at-
y _ 

' ax' ay' ^ az'j dt 

Using equation (3.12), rewrite equation (3.17) 

(3.15) 

(3.16) 

(3-17) 

(3.18) 

If we define a vector B'(x',y',z',t'), using the same procedure 

aB' ai' /_ „ x -^ = ̂ +(v.VB' 
at' at ^ 

(3.19) 

By using a vector identity 

Vx(vxB)=pV)ir-(i7-V)B + v(V.B)-B(Vv) (3.20) 

we have 

^ = ̂ -Vx(vxB')+v(V-B') 
at' at 

(3.21) 

Using equation (3.13), (3.14) and (3.21), equations (3.6) to (3.8) can be expressed in the 

equivalent forms 
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VxH'=J' (3.22) 

V B ' = 0  ( 3 . 2 3 )  

VX (E'-V X  §•)=-— (3.24) 
dt 

V • D'= 0(no free charge) (3.25) 

The differential equation of quasi-static magnetic field systems in the laboratory frame are 

V x H  =  J  ( 3 . 2 6 )  

V B = 0  ( 3 . 2 7 )  

V x E  =  ~  ( 3 . 2 8 )  
dt 

V • D = 0 (no free charge) (3.29) 

It has been postulated that equations (3.22) to (3.25) describe the same physical laws as 

equations (3.26) to (3.29). A comparison of the two sets of equations gives a consistent set of 

transformations which satisfies the requirements 

H'=H, B'=B, D*=D,E'=E + vxB (3.30) 

The transformations in equation (3.30) relate the values of electromagnetic quantities in a 

quasi-static magnetic field system 

From the equation (3.19), it is clear that the right hand side is the rate of change with 

respect to time derivative of B' for an observer moving with velocity v. This derivative is 

also called convective derivative and can be written in the alternative form 

:^=^+(v.V)B' (3.31) 
ZX dt ^ ^ 
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Consider a ID movement in the z direction with a constant moving coordinate system as 

show in figure 3.3. The time derivative term at a point P(Z) moving with the coordinate 

system at an instant t+ At can be written 

9t At 

At 

B"^(z,)-B' (z2) ^ AzB'U,)-B'(z,) 

At At Az 

3B' 

9t az 

at ^ ' Di 

where Z| and Za are fixed coordinate system. Again, the convective derivative in (3.31) is 

obtained. 

Position at time t 

zl 

Position at time t+ A/ 

z2 

Hgure 3.3. Example of ID movement with a constant velocity 
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3.1.2 Governing Equation 

Quasi-static magnetic field equations can be expressed as 

VxH = J (3.33) 

VB = 0 (3.34) 

V x E  =  - — + V X ( V X B ) (3.35) 
0t 

V • D = 0 (no firee charge) (3.36) 

B = nH (3.37) 

In terms of the vector magnetic potential defined by 

V x A  =  B  ( 3 . 3 8 )  

Equation (3.1), (3.5) and (3.6) can be used to derive the equation 

VxivxA = J (3.39) 

where J=Js+Je, -Is is equivalent source cunent and Je is induced eddy current. Substituting 

equation (3.38) into (3.35) results in 

Vx 
dA ^ 

E+-r—vxVxA 
^ at 

= 0 (3.40) 

Using the vector identity V x (W) = 0, we can write 

- aA 
E+—-vxVxA = -W (3.41) 

dt 

For an isotropic and homogeneous conducting medium we have 

J, =oE (3.42) 

Substituting equation (3.41) into (3.42) 
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J. =-<y^-+ovxVxA-oVV (3.43) 
dt 

For 2D axisymmetric case VV =0. Substituting equation (3.43) into (3.39) results in the 

governing equation 

1 - - 3A 
Vx—VxA = Jj-o—+ovxVxA (3.44) 

p. at 

dA 
The above equation includes two velocity related terms. (1) o is the current density due 

ot 

to a change in the magnetic vector potential with time. (2) o v x V x A is the current denstiy 

due to the relative motion of the magnetic field and a pipewall. To solve (3.44), there are 

several methods for time stepping including Donea's method [27], Zienkiewicz's method 

[28] and Leismann and Frind's method [29]. A detailed comparison and analysis of each 

method is shown in [30] and it was found that Lesimann and Frind's method results in more 

accurate and stable results. In the following section, Lesimann and Frind's method is used for 

the transient analysis. 

3.L3. Transient Analysis 

For the 2D axisymmetric case, equation (3.44) reduces to: 

r - M * f  d r  r d r  d z  

^dA^ 

dz 

9 A  , d A  7  =<y-~+ov- Js 
dt dz 

(3.45) 

dA 
The term represents the defect-induced current density resulting from the time varying 

magnetic field caused by the changing spatial relation between the defect and magnetizer. In 

the case of a defect free pipe, this term is zero. The velocity term cvxVxA is modeled 
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using the Leismann-Frind method [29], described below. Consider the ID case of equation 

(2.2) 

9A 1 d^A dA -
CT—=-—TT -  ov—+Js 

3t H dz" dz 
(3.46) 

In the Leismann-Frind method, an artificial diffusion term is introduced and individual time 

weighting factors are used for each time step. The artificial diffusion term and the weighting 

factors are determined during a process of error minimization. 

Introducing the artificial term (D*) in equation (3.46) and using separate time weighting 

dA A"*'-A° 
factors = , we have 

dt At 

A"*' -A" - 1 d-A""' „ . , 1 a^A" - 8A"*' 
a ^ = 0H ^^ + (l-0d) —0vOv-

At H dz - H Bz - dz 

-(l-0Jov^+e,D*^^ + (l-0JD*^ 
dz dz* dz" 

(3.47) 

here, 0^,0^. and 0,are the weighting factors and D* is artificial diffusion term. 

Using the central difference method t = t„ for the time stepping. 

A<t) = A(t.+-^) 

Taylor series expansion for magnetic vector potential at old and new times, with the central 

difference scheme, is derived as 

A"*' =A 

= A 

At 
K +— 

n 2; 

^ At +— 

'•"T 

At 
H 

dA 
r 

tn + 
" 2. 

/ 

At^ 
a 'A 

At^ 
In + 

7 

(3.48) 

dt '  
+d(At^) 
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A "  = A  t„ +• 
" 2 

—  
2 

J ^0 At = A t. H 
I " 2 J 2 

aA t„ + 
At' 

2> At' 
a 'A t„ + 

At (3.49) 

dt 8 at-
-+d(AtO 

Substituting equations (3.48) and (3.49) into equation (3.47) gives 

BA 1 3'A dA . <T_ = _—-av—+Js 
ot |J. az' oz 

e.-i At 
1 a- aA 

--0„ CTvAt 
a aA 

dz at 

dz' 

iidz at v.. 

Oi-k* A d' dA D*At. ,  .  -n3(Af) 

(3.50) 

2 J  dz' dt 

The first line of equation (3.50) is the same as equation (3.46) and hence the remaining term 

is error term. Rewriting the error terms 

D*-|^l-e^jav'At 
a-A 

az- ••4) D»At-^ (3.51) 
H dz' 

In order to make the coefBcient matrix symmetric, the velocity term is evaluated at the old 

time which requires that 6^ be zero. In order to reduce the error term to zero, all the 

individual coefficients must equal zero. This results in 0^ = 1 and D* = . The unknown 

value 6, is decided by stability requirements. It is shown that stability can be guaranteed if 

0, >-j and unlimited stability is achieved when substituting these 

weighting factors and the artificial diffusion term into equation (3.50) we get the Leismann-

Frind equation for the ID case as 
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2*. :i2 ov At o CT 1 9^ 
T-0a 

At h8z2 2 5,2 

n+I 

Js + —+ ( l -0a ) -
At 2 

ov^At 3^ 
-oV— 

3z dz 

(3.52) 

The above equation computes the solution. A"*', at the (n+l)'*' time from a known set of 

solution values A" at the n*** time step. Figure 3.4 shows the flux plot (a) with 10"^ m/s (zero 

velocity) and (b) with 5 m/s. It is seen that the flux lines are distorted significantly due to 

velocity effect. Figure 3.5 shows the induced current of (a) 10"^ m/s and (b) 5 m/s. Motion 

induced current at zero velocity is almost negligible when con^ared to the induced current at 

5 m/s. Figure 3.6. shows the conq)arison of the MFL signal with static case and velocity (5 

m/s) 

3.2 Nonlinear Analysis 

A second issue in this model is the nonlinear magnetic characteristics of the pipewall. 

In the linear problem, the operating points of ferromagnetic material assumed to be in the 

linear region of the B-H curve. In the reality, however, high magnetization levels drive the 

pipewall and backing iron to saturation. The operating point of the ferromagnetic material 

varies considerably. Detailed investigation and modeling of the nonlinear permeability of the 

pipewall and backing iron is shown in [15]. Figure 3.7 shows the B-H characteristic of the 

pipewall (1) and backing iron (2). The initial value of B is obtained from figure 3.7 to 

H 
calculate the initial value of reluctivity v = ̂  which is the input to the FEM code. The 

magnitude of B is then calculated using the FEM code. The magnitude of B is then calculated 
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-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Figure 3.4. Velocity effect on the flux line at (a) zero m/s and (b) 5 m/s 
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Figure 3.S. Induced currents in the pipewall at velocity (a) zero nVs and (b) 5 m/s 
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Figure 3.6. MFL signal with velocity (zero and 5 m/s) 
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0.5 1.5 3.5 45 
4 H 

xlO 

Figure 3.7. B-H characteristic of pipwall (1) and backon iron (2) 

using the FEM code. The magnitude H is calculated using two sampling points on the B-H 

curve close to the calculated magnitude of B as follows; 

(3-53) 

Bl, B2 are the sampling points close to B. HI and H2 are the sampling points close to 

calculated magnitude of H. Figure 3.8 shows this linear interpolation scheme. The reluctivity 

V is calculated in each element as follow; 

1)=— (3.54) 
B 

The new reluctivity values are calculated for the next step as follows; 

v«ew = (w - +Vou (3.55) 
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IBI 

B, 

B 

Figure 3.8. Operating point on the B-H curve 

where fac is a damping factor to control the convergence. For the transient case, the 

nonlinear procedure includes two steps. The first step is the nonlinear step which consists of 

an iterative process within a certain time step (tk). The second step is the time step which 

calculates both old and new values of the unknown function A, and A 

The nonlinear algorithm with the time stepping scheme is as follows: 

1. Initialize the reluctivity value 1) to a certain constant. 

2. Run with the fixed reluctivity value with time stepping 

3. Increment time step Reset B, A^^^ 

4. Calculate the reluctivity value, B and A^ using FEM formulation with time stepping. 
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5. Compare and . If the difference is not less than a threshold, then 

Aoidt^ = and go to step 3. Otherwise, it is considered that the iteration has 

converged to the reluctivity value u corresponding to the B-H curve. 

6. A = A, . If all time steps are done, then stop. Otherwise go to step 3. 

Figure 3.9 shows the flow chart of the overall nonlinear procedure with time stepping. 

Figwe 3.10 shows the current density plots in the pipe-wall for the (a) linear case and (b) 

nonlinear case, in the absence of any defects. The pig velocity is S m/s. The profile with the 

maximum amplitude corresponds to the innermost pipe-wall layer. These results show that 

there is a significant difference between linear and nonlinear models and a full nonlinear 

model needs to be used for more accurate simulation of the underlying physics. 
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Figure 3.9. Row chart of overall nonlinear procedure with time stepping 
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Figure 3.10. Current density plot in pipe-wall (a) Linear (b) Nonlinear 
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CHAPTER IV. MODELING OF CURRENT PERTURBATION 
METHOD 

4.1. Introduction 

The conventional MFL tool generates axial magnetic flux and cannot effectively 

detect and characterize axially oriented stress corrosion cracks. However, as mentioned in 

chapter 3, due to tool velocity, conventional MFL tools also generate strong circumferentially 

oriented currents. These currents are perpendicular to the SCC, and can be used to detect the 

presence of axially oriented SCC. The interaction of these currents with axially oriented SCC 

results in a perturbation of the current distribution. The fields associated with the perturbation 

currents carry information relating to the presence of axial SCC. 

Stress corrosion cracks are in general extremely tight and in order to model a tight 

crack with infinitesimal width as shown in figure 4.1 and simulate the motion induced 

current in the pipe wall and the current perturbation fields, a full three dimension (3D) 

numerical modeling is needed. 

The development of a 3D model is a significant challenge in terms of both 

computational time and memory requirement. The challenges arise due to nonlinear material 

property, the size of tight cracks relative to that of the pipe and magnetizer dimensions, and 

also due to time stepping involved in modeling velocity effects. 
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Figure 4.1 Tight crack 

The modeling approach proposed in this thesis addresses these problems by decomposing the 

overall task into four simpler subtasks that can be performed sequentially. In this procedure, 

first, we assume that the perturbation effect due to defect is limited to a small region around 

the defect. This helps in reducing the region of interest that needs to be modeled. Second, the 

region of interest is assumed to be located remote from the magnetizer where the fields are 

significantly smaller and hence we can assume linearity. This allows the use of the 

superposition principle, where the total current is divided into (i) back ground current (Jq) 

which is the circumferential current due to the velocity effect in the absence of defect and (ii) 

perturbation current ( Jp ) due to the introduction of an SCC. Figure 4.2 shows the 

decomposition of the total current into background current and perturbation current. The 

details of each step are described next. 



www.manaraa.com

45 

(a) (b) 

(c) 

Figure 4.2. Current deconaposition (a) background current (b) perturbation current 
(c) total cunent 
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4.2. Single Layer Source Model 

4.2.1. Stepl: Calculation of Velocity Induced Currents 

In this step, a defect free pipe with a magnetizer moving at a fixed velocity is 

modeled. The governing equation for this step is 

where, A is magnetic vector potential, m is magnetic permeability, v is velocity, o is 

electrical conductivity and J, is source current density. Figure 4.3 shows the geometry of 

relation between the defect and magnetizer. In the case of a defect free pipe, this term is zero. 

The velocity term o v xVx Ais nwdeled using the Leismann-Frind method. Since the defect 

free geometry is completely axisymmetric the equation (4.1) reduces to the two dimensional 

form in the cylindrical coordinate system. The velocity-induced current Jg in the defect free 

pipewall is calculated using the relation. 

Motion induced current distribution in the pipe wall without defect at a velocity of S m/s is 

shown in figure 4.4 (a). The axial distribution of currents on the inner surface (1) middle of 

pipe wall (2) and outer surface of the pipe wall (3) show that in the vicinity of the 

magnetizer, the current decays from the ID to the OD of the pipe. Figure 4.3. (b) shows the 

current distribution in the remote field region where the current decays from OD to ID. The 

cuirent Jq is used as the source term in step 2, whkh models a section of the pipe wall in the 

remote field region. 

Vxi-VxA=Js-o-^+ovxVxA 
H A 

(4.1) 

represents the defect-induced current density by the changing spatial 

(4.2) 
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Figure 4.3.. Geometry of step 1 
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Figure 4.4. Motion induced current distribution in the pipe wall (velocity :5 m/s), 

(a) whole pipewall, (b) remote region 
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4.2.2. Step2: Calculation of Perturbation Current by SCC 

A tight crack of zero volume is now introduced in the remote field region of 

the pipe as shown in figure 4.5. Assuming symmetry about the defect plane, only half the 

geometry is modeled. The basic assumption in this step is linearity of constitutive relations in 

the remote field region, so that the total current J in the presence of SCC is the sum of the 

background current Jg in the defect free pipe and the anomalous perturbation current 

introduced by the SCC. Let be the SCC domain characterized by a set of nodes. Then 

we can define 

- Jo in ^defect 
(4.3) 

unknown in £2 ^defect 

where is the complements of . The total current is given by; 

J = Jo + Jp (4.4) 

On we have 

jp = -j0 = o(^+VV) (4.5) 
dt 

where V is the electric scalar potential. 

Ignoring the contribution of the term at first, we apply the Neumann boundary 
ot 

conditions on the defect nodes i 

Jp = 
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Plane of symmetry 

Figure 4.5. Geometry of step 2. 
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where Jq is the current distribution obtained in step 1. The solution of the governing Laplace 

Equation V^V=0 gives as a first approximation, the perturbation currents Ip in the pipe 

wall section with an axial SCC. The perturbation currents due to a SCC are shown in 

figure 4.6, (a) side view and (b) top view. Total current J is shown in figure 4.6, (c) side 

view and (d) top view. 

4.2.3. Step 3: Calculation of Current Perturbation Fields 

The fields associated with the perturbation currents are calculated in this step. The 

governing equation for this step in terms of the vector magnetic potential is the three 

dimensional equation 

Vx-VxA = Jp (4.7) 

where Jp is the current distribution obtained in step 2. This solution of the above equation is 

8A 
a first approximation of A. The solution is used in equation (4.5) in the term c-z— to 

at 

correct the defect free current distribution and steps 2 and 3 are iterated until convergence is 

obtained. The final solution A is used for confuting the flux density B = VxA associated 

with the perturbation currents. The fields obtained at the lift off of 0.1 cm in step 3 are 

plotted in figure 4.7. The defect signal is obtained by measuring the voltage induced in a coil 

held perpendkular to the circumferential con^nent Bz of the flux. 
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Figure 4.6. Step 2 results, perturbation current, (a) side view (b) top view, 
total current (background + perturbation current) 
(c) side view (d) top view 
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Figure 4.7. Fields of step 3. (a) Circumferential (b) Radial (c) Axial component 



www.manaraa.com

54 

4.2.4. Step 4; Measurement of perturbation fields using a coil 

The motion of the tool is modeled by implementing steps 2 and 3 for each position of 

the defect relative to the pig and sensor coil, which are kept fixed. For each position of the 

magnetizer, the flux <ffi calculated using axial field components as follow: 

The induced voltage in the sensor coil is then computed using the following equation: 

Vi=-N^, « = (4.9) 
dt 

where, Vi is the signal due to each axial component of the current perturbation fields and N is 

number of turns of coil. 

The modeling of a single SCC allows the use of symmetry about the crack plane. 

However SCC usually occurs in groups or colonies. In the multiple SCC case, the symmetry 

is no longer guaranteed. A simple example of a group of SCCs oriented parallel to each other 

is shown in figure 4.8. In this case each crack must be modeled in entirety using two layers of 

source nodes. Double layer source models are widely used in the boundary integral method 

[31]. The following section describes this approach in detail. 

(48) 

4.3. Double Layer Source Model 
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Figure 4.8. Exanple of SCC colony 

4.3.1. Single layer charge distribution 

It is known that if the charge is distributed on a surface S with density Ps, which is a 

bounded and piecewise continuous function of position S, the potential at any point not on S 

is 

V(r) = —f ̂ i^dS' (4.10) 
47ceo| R 

where V(r) is a continuous function. The potential produced by a surface charge distribution 

is a bounded, continuous function of position of all points both on and off the surface, and is 

therefore continuous across the surfaces. 

V* = V- = Vs on S (4.11) 

The subscripts '+' and denote the potential just outside and inside of the surface, 

respectively. On the other hand the field intensity 



www.manaraa.com

56 

is continuous and has continuous derivative at all points not on the surface. The field 

intensity, however, undergoes an abrupt change across the surface S. The interface condition 

on the electric flux density D or field intensity E are 

where, and denote outside and inside the surface, n is the outward unit vector normal 

to S. Figure 4.9 shows the field discontinuity along the single layer source. 

If the surface charge density is modeled as a single layer source, it is equivalent to an 

inhoroogeneous Neuman boundary condition (boundary condition of the second kind). In 

other words, the boundary value problems with inhoroogeneous boundary conditions of the 

second kind are identical to those of a single layer source on the boundary surface. 

(D.-D-)-n=p, (4.13) 

E*-E- = ̂ n (4.14) 
£ 

Ps 
+ 

+ 
E„^-E«_=^ + 

e 

Hgure 4.9 Ebld discontinuity along the single layer source 
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4.3.2. Double layer source distribution 

Consider a double layer charge distribution, where the positive charges are distributed 

on the positive side of a closed surface S and the negative charges are distributed on the 

opposite side. The double layer charge distribution is separated by the infinitesimal distance 

dl which is shown in figure 4.10 

The dipole moment per unit area is defined as 

The potential induced by the double layer source at a point P(r) not on the surface S is 

r = /I lim ip.dl)  (4.15) 

f 1 ^ 
-tV — dS' 
•0 

(4.16) 

7 2 'Is is proportional to the solid angle dco subtended at point P(r), hence 
r 

n 
Ks) 
+ 

dl 

Figure 4.10. Double layer source distribution 
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V(r) = ̂  fT(r') - vfildS = ±^ fTd© 
47t£oJ 47ceoJ 

(4.17) 

where doois the solid angle subtended at point P(r) by surface dS, as show in figure 4.II. The 

sign ± depends on which side of the surface S the observation point lies. The main 

characteristic of the double layer distribution is that the potential is discontinuous across the 

surfaces. If the surface S is closed and the charge density is uniform then x can be taken out 

from the integral. The positive charge lies on the outer side of S in which case x has the same 

direction as the positive normal of the surface. As the property of the solid angle 

471 P inside the surface 

0 P outside the surface 
(4.18) 

thus 

V+ = 0 V- = X 
(4.19) 

and 

(4.20) 

n 

P(r) 

Figure 4.11. Solid angle 
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The potential undergoes an abrupt change of T/EO when the observation point moves from the 

inner side to the outer side of a double layer source. The boundary value problem with 

inhomogeneous boundary conditions of the first kind can be represented by an appropriate 

distribution of the dipole layer source. The normal continent of the field strength is 

continuous from one side to the other. 

However, the tangential component of E may be discontinuous, because the potentials 

undergo an abrupt change on both sides as shown in figure 4.12. 

(4.21) 

(4.22) 

V,-V, =-—(t + Vt-db) (4.23) 

V,-V, =AV, (4.24) 

V3-V, =AV (4.25) 

Figure 4.12 Discontinuity of Et around a double layer source 
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db is a small length along the surface. Since the sum of the potentials around the loop is zero 

2V,=0 (4.26) 

_r__ (T+VT• db) ^ AV, - AV =0 (4.27) 
So So 

then 

AV ; AV. VT 

db db S(, 

and 

(4.28) 

E,.-E,.=-VI- (4.29) 
£0 

The abrupt change of Et produces an abrupt change in E, since the normal component of E is 

continuous. 

E*-E- = -V— (4.30) 
so 

Vt is the gradient of t along the surface. If t is uniform then E is continuous. 

4.3.3. Application of double layer source model to SCC in pipe 

In a double layer source model, steps 1 and 3 are the same as in the case of a single 

layer source model. In step 2, the single layer current source is now replaced by the double 

layer source model as described in the previous section. 

Step 1. Calculation of Velocity Induced Currents 

The velocity-induced currents Jq in a defect-free pipe wall due to axial motion of the 

magnetizer relative to the pipe is calculated, by solving the 2D governing equation 
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VxiVxA=Js-a^+ovxVxA (4.31) 

Step 2. Calculation of Perturbation Current by SCC 

This step models a 3D region with an SCC. The SCC is characterized by a double 

layer source. In the double layer source model, the defect is represented by 2 layers of equal 

and opposite charges. The tight crack of infinitesimal width is modeled by using the same 

physical coordinates for the nodes on the two surfaces of crack, A and B shown in figure 

4.13. Neuman boundary conditions are applied on the two sides of the crack as 

dn 
^0 A ^ = —'^on A — 
a dn 

= ̂  onB (4.32) 

The Laplace equation V-V=o is solved to give a first approximation of the perturbation 

currents Jp in the pipe wall section with an axial SCC. The perturbation currents due to two 

parallel SCCs is shown in figure 4.14, (a) side view and (b) top view. Total current 

(background + perturbation current) is shown in figure 4.14, (c) side view and (d) top view. 

Figure 4.13. Double layer source model 
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Figure 4.14. Step 2 results using double layer source model, perturbation current 

(a) side view (b) top view, total current (background + permrbation 

current) (c) side view (d) top view 
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Step3. Calculation of Current Perturbation Fields 

The results obtained in step 2 are used to solve for the perturbation fields that can 

then be measured using a coil. The governing equation in this step is 

V x - V x A  =  J p  ( 4 . 3 3 )  

Multiple and arbitrary SCCs can be modeled by the double layer source model. 

However, the double layer source model uses the full geometry. Hence, it is computationally 

intensive. In the following section, a numerical method will be discussed which reduces the 

confutation time and storage requirement. 

4.4 Substructure Method 

In general, a three dimensional finite element method of a field problem is extremely 

computation intensive. The problem arises due to the large area of the geometry and small 

region of the crack that has to be meshed appropriately. In this work, the geometry consists 

of a 24 inch diameter pipe of wall thickness 0.34 inch in which narrow cracks are introduced. 

With a mesh discretization of 20x20x16 and bandwidth of464, the matrix size to be inverted 

at each time step is 3276273. Computation time for each run is around 3.5 hours. Hence there 

is a need for optimizing the con^utational procedure. In the substructure method [32] [33], 

first the entire domain is divided into several parts which are connected to each other by a 

finite number of nodes. The elements of the matrices of each sub part are assembled into a 

submaster matrix. These submaster matrrces for each part are similar to the matrices for an 

element and in fact, each part can be viewed as a superelement or a substructure [34]. The 

decomposition of the region into subregions so that changes at each time step is restricted to 
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a single subregion, significant computational savings can be achieved. The details of 

implementation are given below; 

STEP I. Suppose a region of interest, Q is divided into two regions, Q| and Qn as shown in 

figure 4.15, where consist of all the areas where the material property parameters have to 

be modified in successive solution steps and where the calculation result at each step should 

be recorded, Qi is the complement of Qn. C denotes the interface between the two regions. In 

mesh generation for Q, element numbers are obtained by first numbering the elements of 

then the elements in Qu. 

The local matrices for the substructures £2i and £2ii can be written as 

where Ki i and Kii n are the submatrices corresponding to Q| and Qn excluding the nodes on 

the interface C. K cc andK" cc are the submatrices for the nodes on the interface C from the 

side of C2i and £2n respectively. The corresponding right hand terms are: 

K i i  K i c  
•" I 

_Kci K c c J n i x N i  

(4.34) 

„ K^'cc Ken Kn = 
_ K n c  K n n J N n x N n  

(4.35) 

(4.36) 

(4.37) 
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Figure 4.15, Sub-region Qi and Qn. 

where Pio and Pno are loading vectors for nodes corresponding to C2i and Qn excluding the 

nodes on C. Pc' and Pc" are loading vectors for nodes on C assembled from the side of Qi 

and Qii. The global matrix for the entire region is of the following form: 

"Kii Kic 0 " 'VIO' 'Pro' 

Kct Kcc Ken Vc = Pc 

0 Koc Knii NxN Vno N Pno 

(4.38) 

N 

where Vio, Vno and Vc are the unknowns in , Qn and C respectively. N is the total number 

of equations (N=Ni+Nn+Nc). 

Kcc=K'cc+K°cc (4.39) 

Pc=P'c+P°c (4.40) 

However, in the substructure method it is not necessary to assemble the global matrix in each 

step. 
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STEP 2. Eliminating Vio result in equation 4.38, we get 

" l  K i 'jKic 0  '  " V io" " k;',Pio 

0  
yM i^n rwcc + *^cc Ken Vc Pc'+Pc 

0  Knc Knn NxN 
Vno 

N  
Pno 

N  

where 

K*! —1^1 — 1^ cc"~^cc 

pM _ pi _ V-T 1^-1 p 
rw,crk.,,r,o 

The equation (4.41) can be written as two equations. 

IVio + K;'IKicVc = K;',Pio 

^ Kcii " V c "  "Pc'+Pc" 

-NiiXNii Vno Nn Pno Nn 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

STEP 3. Store Kcc ' and Pc*' in the secondary storage for further usage, since these matrices 

do not change with changes in Qu. 

This substructure method can reduce both computational resource and time. In the 

next chapter, numerical results of implementation are discussed with both single layer source 

models and the double layer source model with a substructure method. 
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CHAPTER V. RESULTS AND DISCUSSION 

5.1. Single Layer Source Model 

5.1.1. Single see 

The overall implementation of the four step procedure is described in figure 5.1. The 

inspection geometry used in the implementation of the FE model is shown in figure 5.2. The 

magnetizer and the pick-up sensor move at a fixed velocity of 5 m per second inside a pipe of 

wall thickness 9 mm. In the absence of defects, the geometry is axisymmetric and, hence, a 

2D model is used in implementing step 1 to calculate the velocity-induced currents in each 

time step. 

In steps 2 and 3, the boxed section around the axial SCC is modeled in three 

dimensions using the source currents obtained in step I. The sensor is a single turn coil of 

dimension 2.45cm x 6.25cm, located in the remote field (30 cm behind the magnetizer) and 

0.1 cm below the inner pipe wall. The plane of the coil is perpendicular to the axis of pipe. 

The resulting defect signals are calculated in terms of the voltage induced in a single turn coil 

by the axial component of the perturbation fields. Parametric studies are conducted for the 

different defect parameters (length and depth) and different sensor positions (axial and 

circumferential). 



www.manaraa.com

68 

1=1 

/ = i+l 

No 

i = last sensor position ? 

Yes 

Calculate velocity induced current density ( J ), 

Using (- J q  ), to define SCC nodes 
Calculate the perturbation current (Jp), 

Calculate the induced voltage signal 

calculate the fields (Bp Bg, £^2)1 
calculate: =/B2 ds 

Figure 5.1. Row chart of the four-step procedure 
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Figure S.2. Geometry used in the simulation 
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(a) Signal variation with defect depth 

The signal due to a defect depth with a Hxed defect length (8 cm) and varying depths 

was calculated. The defect depths were 20 %, 40 %, 60% and 80% of pipewall thickness. The 

voltage signal, as a function of depth of the SCC is shown in figure 5.3. The peaks occur at 

the SCC edges. The peak-to-peak value plotted as a function of flaw depth in figure 5.4, 

show an exponential variation. 

(b) Signal variation with defect length 

The effect of varying defect lengths with a fixed defect depth (60% of pipewall) were 

calculated. Four different defect lengths (2 cm, 4 cm, 6 cm, and 8 cm) were chosen. The 

voltage signals obtained with various axial lengths of SCC are plotted in Figure 5.5. The 

peak-to-peak value plotted as a function of defect length in figure 5.6. The results show a 

monotonic increase in the peak value of the signal with defect length. 

(c) Signal variation with circumferential sensor position 

The max signals due to a defect size are obtained when the sensor coil is directly 

under the flaw. The voltage signals obtained at other circumferential positions of the coil 

show a reduction in magnitude. The voltage signals at 0°, 7.9°, 15.8°, and 23.7° are plotted in 

figure 5.7. The peak-to-peak value plotted in figure 5.8 as a function of the angular distance 

between the defect and coil position show a reduction in the peak amplitude of the signal. 
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(d) Signal variation with axial sensor position 

The axial sensor position in the above parametric studies was 30 cm behind the 

magnetizer. The voltage signals obtained at different axial sensor positions of 10 cm, 20 cm, 

30 cm and 40 cm behind the magnetizer are plotted in figure 5.9. The voltage signal is larger 

when the sensor is close to the magnetizer. However, the signal due to the sensor position at 

10 cm is distorted significantly, due to an interaction with the primary fields of the magnets. 

(e) Signal comparision due to different velocity 

The effects of tool velocity on signals due to different defect depths and different 

circumferential sensor positions were calculated. The peak-to-peak values of the signal due 

to different defect depths with velocity 3 m/s and 5 m/s are plotted in figure 5.10. The signal 

magnitude is seen to be higher at velocity. Since the velocity induced currents are higher. 

Figure 5.11 shows the peak-to-peak value as a function of circumferential sensor position 

with different velocity. 

The parametric studies show that the peaks occur at the edges of the defect and the 

sensor has maximum sensitivity when it is positioned directly under the defect. It is also 

shown that the sensitivity of the sensor is increased as the velocity is increased. These results 

should be taken into consideration in the tool design. 
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Figure 5.3. Induced voltage measured for defects of different depths 
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Figure 5.4. Peak to peak value of induced voltage as a function of defect depths 



www.manaraa.com

73 

* 10* 

4em 

2cm 

6cm 

6 cm 
II 
z 

I 
I 
I 

—€ 

Figure 5.5. Induced voltage measured for defects of different lengths (60% depth ) 

Figure 5.6. Peak to peak value of induced voltage as a fiinction of defect lengths (60% depth) 
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Figure 5.7. Induced voltage measured at different circumferential coil position (60% depth) 

Figure 5.8. Peak to peak value of induced voltage as a fimcition of 
different circumferential coil position (60% depth) 
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Figure 5.9. Peak to peak value of induced voltage as a fiincition of 
different axial coil position (60% depth, 8cm length) 
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Figure 5.10. Peak to peak value of induced voltage as a function of defect depths 
with veocity (3 m/s and 5 m/s) 
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Figure 5.11. Peak to peak value of induced voltage as a fiincition of different circumferential 
coil position (60% depth) with velocity (3 m/s and 5 m/s) 
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5.1.2. Multiple SCC by Superposition method 

Results presented in the previous section are due to a single defect. The SCC, 

however, generally occur in colonies. The simplest way to model multiple defects is to utilize 

the superposition principle. The current perturbation method discussed in chapter 4 is 

modeled in the remote region where linearity assumed. In this case, the superposition method 

was used to approximate the multiple defect case. Two parallel defects (8cm long, 80 % 

depth) are used in the simulation of the superposition method. Figure S.12 shows the signal 

due to two parallel defects as a function of circumferential distance between the defects. The 

signal due to two parallel defects with both cirumferetial distance and axial distance are 

shown in figure 5.13. Finally a colony of parallel SCCs were simulated. In the first example, 

7 defects all of the same depth (60%) and different length (two 2 cm, three 4 cm, one 6 cm 

and one 8 cm) as shown in figure 5.14 (a) were modeled and the resulting signal is shown in 

figure 5.14 (b). In die second example, six different defects in figure 5.15 (a) were chosen 

and all defect dimensions are summarized in table 5.1. Figure 5.15 (b) shows the resulting 

signal. Figure 5.16 (a) shows a colony with 7 defects with dimensions summarized in table 

5.1. Figure 5.16 (b) shows the resulting signal. 

5.2. Double Layer Source Model 

This section presents results of implementing the double layer source model 

described in chapter 4.3 for multiple SCCs. The inspection geometry used in the 

implementation of the double layer source model is the same as the single layer source model 

which is shown in figure 5.2. 
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Table S.l. Defect profile for each case of the superposition method 

Case Defect Defect Defect Depth Location 

No. Length (cm) (%) Circumferential 

position (m) 

Axial position 

(cm) 

Case 1 1 4 60 0.0625 - 4 - 0  

2 4 60 0.03125 2 - 6  

3 8 60 0 - 4 - 4  

4 2 60 0 6 - 8  

5 6 60 -0.03125 - 6 - 0  

6 2 60 -0.03125 2 - 4  

7 4 60 -0.0625 0 - 4  

Case 2 1 8 60 0.0625 - 8 - 0  

2 2 60 0.03125 4 - 6  

3 2 60 0 -6 - -4 

4 4 60 0 - 2 - 2  

5 4 60 -0.03125 1 00
 

1 
6 6 60 -0.0625 0 - 6  

Case 3 1 4 60 0.0625 

1 

1 
oo 1 

2 2 60 0.0625 O
N

 

1 O
O

 

3 2 60 0.03125 -8--6 

4 4 80 0.03125 -4-4  

5 2 60 0 0 - 2  

6 6 60 -0.03125 t 
oo 1 

7 4 60 -0.03125 4 - 8  
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6.250 cm 
9.375 cm 
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10 10 

Figure 5.12. Signal due to two parallel defect as a function of circumferential 
distance (8 cm long, 80% depth) 

X 10' 

10 

Figure 5.13. Signal due to two parallel defect with distance of both circumferential and 
axial (8 cm long, 80 % depth) 
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Figure 5.14. Case 1 defect profile (a) and resulting signal (b) 
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Figure 5.15. Case 2 defect profile (a) and resulting signal (b) 
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Figure 5.16. Case 3 defect profile (a) and resulting signal (b) 



www.manaraa.com

83 

(a) Comparision of single and double layer source model 

In order to validate the double layer source model, the signal from a single SCC was 

compared to that obtained from single layer source model. Figure 5.17 shows the resulting 

signals of symmetric model (solid line) and double layer source model (dotted line) due to an 

SCC of 8 cm length and 60% depth. The peaks of the signal occur at the SCC edges. The two 

predictions are seen to be identical indicating the equivalence of the two models. 

(b) Nonparallel SCC 

One of the limitations of the single layer source model with superposition is the 

inability to model defects at angle to each other. The double layer source model is 

asymmetric and can be used for simulating arbitrary defect colonies. In the first example, we 

next consider a single SCC at an angle to the pipe axis. In this case, the Neuman boundary 

conditions are given as follow. 

an 
= -^cose (5.1) 

o 

where 6 shown in figure 5.18 is the angle between the normal direction n and projected 

normal direction n'. The mesh for the angular defect is shown in figure 5.19. In this case, the 

defect is at an angle of 26 degrees. Figure 5.20 shows the reduction in the induced voltage 

due to the angle. The solid line is the signal from the defect exactly orthogonal to current and 

the dotted line is a signal from the angled crack. Figure 5.21 shows the signals as a function 

of different angles. 
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Figure 5.17. Comparison of symmetric model and double layer source model 
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n 

Figure 5.18. Angle 6 between the normal direction n to the parallel defect and normal 
direction n' to the angular defect 
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Figure 5.19. Mesh for angular defect 
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Figure 3.20. Induced voltage for parallel and angular defect 

•10 
Ann Oiractton (cm) 

Figure 5.21. Induced voltage signals as a function of different angles 
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(c) Comparision of superposition model and double layer source model 

The results of the superposition model and double layer source model is compared for 

two parallel defects each of 60% depth and 8 cm length. The models were compared for the 

case of different circumferential defect distances separating the two cracks. The resulting 

signals with different distance (4mm, 8nmi, 2.4 cm and 4 cm) are shown in figure 5.22 (a), 

(b), (c) and (d) respectively. The signal differences between superposition model and double 

layer source model decreases as the distance between the defects is increased, indicating that 

the superposition model is only valid when the two cracks are at least 4 cm apart. 

(d) Mutual interactions between the cracks 

In the double layer source model, the resulting signals for the two parallel defects are 

calculated by using the same Neuman boundary condition in step2 at both defect nodes. 

However, we need to consider the mutual interactions between the cracks. To do this, first, 

perturbation currents are calculated for one of the two parallel defects. The resulting 

perturbation current is given as Neuman boundary condition for the second defect. Figure 

S.23 shows the resulting signal for two parallel defects with circumferential distances (8 mm 

and 4 cm) between the defects. Each defect is 8 cm length and 60% depth of the pipewall. 

The mutual interactions effects are higher when the distance between the defects is small. 

However, the mutual interactions effect is quite negligible and can be ignored. 

(e) Multiple SCCs 

Four different SCC colony cases were tested. Table 5.2 shows the defect profile for 

each case. Li easel, there are four defects as shown in figure 5.24 (a) and the resulting signal 
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Figure 5.22. Comparison between superposition model and double layer source model with 
the different circumferential distance between the two parallel defects 
(a) 4 mm (b) 8 mm (c) 2.4 cm and (d) 4 cm 
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Figure 5.23. Mumal interaction effect between the two parallel cracks at circumferential 
distance (a) 8 mm and (b) 4 cm 
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is shown in figure 5.24 (b). Eight defects are shown in figure 5.25 (a) for case 2 and the 

resulting signal is shown in figure 5.25 (b). Unlike cases 1 and 2 which have only defects 

parallel to the pipe axis, case 3 has defects at angle to the pipe axis as shown in figure 5.26 

(a). The resulting signal is shown in figure 5.26 (b). Case 4 has a combing of angular defect 

and two parallel defects as shown in figure 5.27 (a). The resulting signal is shown in figure 

5.27 (b). 
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Table 5.2. Defect profile for each case 

Case Defect Defect Defect Defect Location 

No. Length Depth Angle Circumferential Axial Position 

(cm) (%) (degree) Positon (m) (cm) 

Case 1 1 6 20 0 -0.02 0-6 

2 8 60 0 0.0 -4~4 

3 4 40 0 0.004 -6~-2 

4 2 80 0 0.004 2-4 

Case 2 1 8 60 0 -0.04 -2-6 

2 4 40 0 -0.02 2-6 

3 4 40 0 0.0 -4-0 

4 2 80 0 0.0 2-4 

5 6 60 0 0.002 -2-4 

6 8 60 0 0.004 -6-2 

Case 3 1 8 60 11.31 0.0 -4-4 

2 4 60 14.03 0.0 0-4 

Case 4 1 4 60 16.7 -0.02 0-4 

2 8 40 0 0.0 -4-4 

3 6 60 0 0.002 0-6 
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Figure S.24. Case 1 (a) defect profile and (b) induced voltage signal 
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Figure S.2S. Case 2 (a) defect profile and (b) induced voltage signal 
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Figure 5.26. Case 3 (a) defect profile and (b) induced voltage signal 
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Figuie 5.27. Case 4 (a) defect profile and (b) induced voltage signal 
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CHAPTER VI. CONCLUSIONS 

This work was motivated by the need for finding an effective method for detecting 

axial cracks. Conventional MFL inspection tools generate axially oriented flux in the 

pipewall and hence can detect circumferential defects but are insensitive to axially oriented 

SCC. In this dissertation, the circumferential currents generated by the axial velocity of the 

magnetizer relative to the pipe are calculated. The circumferential currents are perturbed by 

the axial SCC. This dissertation investigates the feasibility of using fields associated with the 

perturbation currents for detection of SCC. 

6.1. Summary of Accon^lishments 

The problem of modeling the overall current perturbation phenomena is decomposed 

into simpler tasks for the sake of computational feasibility. A four step procedure for 

modeling the interaction of axial SCC with circumferential currents has been developed. The 

overall problem is broken into four sequential tasks in order to simplify the model. The tasks 

involve the calculation of; 

(1) the velocity induced currents 

(2) current perturbation due to presence of SCC 

(3) the flux associated with the perturbation fields and the voltage induced by the 

perturbation current 

(4) Measurement of perturbation field using a coil 
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Numerical simulation of single and multiple SCC were performed. Parametric studies were 

done with respect to varying defect geometry. Double layer source model is utilized for the 

simulation of SCC colonies with arbitrary orientations. Results of numerical studies are very 

promising and indicate feasibility of the current perturbation method in detecting SCC. The 

signals predicted by the model are significant and should be measurable. Experimental 

validation of the method needs to be carried out. However, this requires the facility to run a 

pig at high velocit^s and the design of new sensors in the conventional pig. Besides 

investigating the feasibility of a new method for detecting axial SCC in the pipewall, the 

work developed in this dissertation also provides a potential method for modeling tight crack 

interaction with currents. The model can therefore be applied in modeling eddy current 

inspections of tight cracks. 

6.2. Future Work 

Apply the modeling procedure to eddy current NDE methods of a sample with tight 

crack (zero volume). One application is in the modeling of a crack under a fastener (CUFs) in 

the eddy cunent inspection of a aircraft part. The geometry is shown in figure 6.1. A small 

fatigue crack on the aluminum plate can develop after an extended period of service due to 

the numerous pressurization cycles. Cracks emanating from the fastener holes in the aircraft 

firames are a major source of failures and detecting of these cracks especially close to the 

fastener holes is very difBcult. 
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FoU 

defect 

Figure 6.1. Defect under the fastener 

The current perturbation method can be applied as follows. First, calculate the background 

cunent in the aluminum plate without defect and fastener by applying the current in the foil. 

Perturbation cunents can be calculated by applying Neuman boundary conditions on the 

fastener and defect nodes. The resulting fields due to the perturbation currents can be 

calculated for further analysis. 
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APPENDIX. FINITE ELEMENT FOMULATION OF STEP 2 

The governing equation of step 2 is 

V(oVV) = 0 

The boundary problem is defined by the second order differential equation 

(A.1) 

a ^ ___ f 
0m -ni-f 

^ av^ 

ax 
Ox 

V axy ay azi  
= f(x,y,z)onfl (A.2) 

where V is electric scalar potential, o,, Oy, and are the conductivity. The boundary 

conditions are 

V=p on S i 

^ dv dw 

ay d z ,  
n+yV = q on St 

(A3) 

(A4) 
ax ay 

where S=S|+S2 denotes the surface enclosing the volume A as shown in figure A.1 and n 

is its outward normal unit vector. 

Figure A.1. 
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A. l .  Domain  Discredzat ion  and Shape  Funct ion  

Let us consider eight nodes hexahedral element as shown in figure A.2. Here, each 

shape function Ni is one at node i and and zero at other nodes of the elements. The shape 

function for the local coordinate system can be written as 

N,=(1-4)(1-TI)(1-Q 

N,=^(1-TI)(1-0 

N3=^(1-0 

N,=(1-4) ti(1-0 (A.5) 

N5=(1-4)(1-TIK 

n,=4(I-t iK 

NS=(1-4)tiC 

Figure A.2. Hexadrai element m (a) xyz coordinate system and (b)local coordinate 
system 
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A.2. Evaluation of Elemental Matrices 

The equivalent variational problem for the boundary value problem (A.2, A.3 and 

A.4) can be given as following 

rA-

^ d x j  ax J dx 
+ 2fV dQ + V- - qVjdS (A.6) 

The variational principle requires 

5F(V) = 0 (A.7) 

Let the solution domain divide into M elements and each element has r node. The unknown 

field in each element can be expressed as 

v '=2;N,v,=[Nr[v] (A.8) 
i=l 

where Vj is the nodal value of V at node i. Then the functional F(V) can be expressed as 

F(V) = |;F'(V') (A.9) 

where 

ravV 

e=l 

F(V) = if 
8x 

y 2 

+ OT 
t a x  j  I J 

X 

/ t a x  j  
X 

I J 
+ 2fV dQ + JIp-V'-qV 

s, 

dS 

(A. 10) 

Substitute (A.8) mto (A.9) and taking the derivative of F* with respect to V' then we have 

"*! j=i n 

aNf aN] aNf aN' aNf aN^ 
o — -+a —' i-+a —' ' 9x 3x ' 3x 3x ' dx dx 

J/v'tTY 'N'JdS-JJqN'dS 
Sj Sk 

(A.11) 
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This can be write in matrix form as 

where 

ap' 
- = ([K']+[K|.])^'}-{b=} 

3v; 

aNf dN] aNf dN] aNf aN^ 
o.—' ^+o — -+a —' 

ax ax * ax ax * ax ax 
dn 

(A. 12) 

(A. 13) 

=J/v'[7N:N;]dS 

bf = JjJfNfdn-JJqN[dS 
n s. 

(A.14) 

(A. 15) 

The hexahedral element in the xyz coordinate system can be transformed into cubic element 

in the coordinate system by following transform equation 

X = ZNi(4.T1.0Xi 
is| 

y=ZNi(4.Ti.0yi 
i=l 

(A. 16) 

z = ZNi(§,Ti,OZi 
is| 

To perform the integration in the system, all the integrands need to be converted in 

term of ^.qand^. The derivative of shape function in the local coordinate system can be 

obtained by using chain rule 
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"aNi" "aN:" 

ax 
dN, 

=[Jl aNj =[Jl 
ay 

aN; aN; 

L34 J  - dz .  

where [J] is Jacobian matrix as follow 

[Jl= 

ax ay dz 

34 
ax ay dz 

an an an 
dx ay dz 

ac K 

The derivative of shape flmction in xyz coordinate systems are 

"aNj" "aN," 

ax 
aN, = [J]' aNi 
ay 

= [J]' 
34 

aN, aN, 
.  dz .  [ 3 4  J  

(A.17) 

(A.18) 

(A.19) 

After calculate the Jacobian matrix, the derivative of shape iiinction in the local coordinate 

system can easily be transformed to the global coordinate system. It can also be shown that 

the element of volunoe in the xyz coordinate system can be transformed into the 

system as 

dfl = dxdydz = detmd^e^d; (A.20) 
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A.3. In^lementadon of Neuman Boundary Condition 

The evaluation of A. 13 is straightforward. However, evaluation of integral in A. 14 

and ||qNfdS in A. 15 is needed surface integral. The surface integral can be carried 

numerically on one of the hexahedral  element plane or C-4)- we 

choose ̂  -T] plane as surface 1 then a surface integrals are 

=JJ[7N:N;]dS = j7NiN3|j|dudv (A.21) 

JJqNfdS = JqNf|j|dudv 
s. 

(A.22) 

where i,j =1,2--,8 and J is Jacobian Matrix 

9a 
du du 

.3v 8v, 

(A23) 

where a- P represent for x-y , y-z or z-x and u-v represent for » i]"C or • For a 

quadrilateral element in a-P space, the mapping from a unit square in u-v space is given by 

a  = 2Nfu, 
i=l 

(A.24) 

P = iNf 'v,  
i=l 

(A25) 

where 

Np'=(l-u)(l-v) 

N® =u(l-v) 
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Nf = uv (A.26) 

Nf '  =(l-u)v 

Consider the t] - ̂  plane of the hexahedral element as a surface 1(4 = 0). Then A.5 become 

N,= (1-TI )(1-0 

N, =0 

N 3  = 0  

(A.27) N , = n ( l - 0  

N5=(1-T,)C 

Ne=(l-Ti)C 

N 7 = 0  

N8=tiC 

Thus surface 1 in a-pplane can be considered as a mapping from a unit square in q-C 

plane. From A.27, we see that Ni, N4, N5, Ng are corresponds to N/"\ N3^'\ The 

other surface integral can be evaluated in similar way. 

For the step 2, f(x,y,z) is zero 

r d 1 
r 

d 1 r av^ 

dx d x .  dy 
®y 

V dz 
= 0  (A.28) 

The Neuman boundary condition is 

9V . -
o— = -J on S2 

on 
(A.29) 
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which is 

oWn +J 

Thus, the overall problem can be stated as 

r 1+A r dvi d 1 

3x 3y dz 

V= P on Si 

oVVn+J= 0 on Si 
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